80,558 research outputs found

    Entangling two atoms in spatially separated cavities through both photon emission and absorption processes

    Get PDF
    We consider a system consisting of a Λ\Lambda-type atom and a V-type atom, which are individually trapped in two spatially separated cavities that are connected by an optical fibre. We show that an extremely entangled state of the two atoms can be deterministically generated through both photon emission of the Λ\Lambda-type atom and photon absorption of the V-type atom in an ideal situation. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is also investigated. We find that the effect of photon leakage out of the fibre on the fidelity can be greatly diminished in some special cases. As regards the effect of spontaneous emission and photon loss from the cavities, we find that the present scheme with a fidelity higher than 0.98 may be realized under current experiment conditions.Comment: 12 pages, 4 figure

    Properties of solutions of stochastic differential equations driven by the G-Brownian motion

    Full text link
    In this paper, we study the differentiability of solutions of stochastic differential equations driven by the GG-Brownian motion with respect to the initial data and the parameter. In addition, the stability of solutions of stochastic differential equations driven by the GG-Brownian motion is obtained

    A Novel Stealthy Target Detection Based on Stratospheric Balloon-borne Positional Instability due to Random Wind

    Get PDF
    A novel detection for stealthy target model F-117A with a higher aspect vision is introduced by using Stratospheric Balloon-borne Bistatic system. The potential problem of proposed scheme is platform instability impacted on the balloon by external wind force. The flight control system is studied in detail under typical random process, which is defined by Dryden turbulence spectrum. To accurately detect the stealthy target model, a real Radar Cross Section (RCS) based on physical optics (PO) formulation is applied. The sensitivity of the proposed scheme has been improved due to increasing PO – scattering field of stealthy model with higher aspect angle comparing to the conventional ground -based system. Simulations demonstrate that the proposed scheme gives much higher location accuracy and reduces location errors

    Mixing Rates of Random Walks with Little Backtracking

    Full text link
    Many regular graphs admit a natural partition of their edge set into cliques of the same order such that each vertex is contained in the same number of cliques. In this paper, we study the mixing rate of certain random walks on such graphs and we generalize previous results of Alon, Benjamini, Lubetzky and Sodin regarding the mixing rates of non-backtracking random walks on regular graphs.Comment: 31 pages; to appear in the CRM Proceedings Series, published by the American Mathematical Society as part of the Contemporary Mathematics Serie

    A theory of evolving natural constants embracing Einstein's theory of general relativity and Dirac's large number hypothesis

    Full text link
    Taking a hint from Dirac's large number hypothesis, we note the existence of cosmic combined conservation laws that work to cosmologically long time. We thus modify or generalize Einstein's theory of general relativity with fixed gravitation constant GG to a theory for varying GG, which can be applied to cosmology without inconsistency, where a tensor arising from the variation of G takes the place of the cosmological constant term. We then develop on this basis a systematic theory of evolving natural constants me,mp,e,,kBm_{e},m_{p},e,\hslash ,k_{B} by finding out their cosmic combined counterparts involving factors of appropriate powers of GG that remain truly constant to cosmologically long time. As GG varies so little in recent centuries, so we take these natural constants to be constant.Comment: 29 pages, revtex

    Fay-like identities of the Toda Lattice Hierarchy and its dispersionless limit

    Full text link
    In this paper, we derive the Fay-like identities of tau function for the Toda lattice hierarchy from the bilinear identity. We prove that the Fay-like identities are equivalent to the hierarchy. We also show that the dispersionless limit of the Fay-like identities are the dispersionless Hirota equations of the dispersionless Toda hierarchy.Comment: 20 page
    corecore